Industry Solutions
Drones & Robotics

Ensure safer, more robust and more cost-effective operations with Luffy Al adaptive flight controller.

Time to take control
Pushing the limits

We are witnessing one of the most exciting transformations in aviation since the jet engine was created some 80 years ago. The move to electrification is driving a revolution in vehicle design, whilst the emergence of the drone ecosystem has opened up a whole new range of applications.

However, safety concerns and substantial technology limitations are preventing the widespread commercial use of drones. Reducing the risk that unmanned air system (UAS) operations present to third parties is a key consideration of the Civil Aviation Authority (CAA) and a critical factor in enabling beyond visual line of sight (BVLOS) operations. BVLOS will pave the way to novel drone applications, such as advanced air mobility (AAM), which will truly revolutionise our world.

To realise this future, a new generation of flight control system is required – one that demonstrates improved performance, safety, robustness and autonomy in lightweight, low-cost avionics.

Say hello to Luffy Al

Luffy AI has developed adaptive neural networks that allow real time on-board learning and adaption. Initial results show that Luffy's AI flight controller qualitatively outperforms conventional autopilot controllers, expanding the operating envelope and improving robustness. This opens the field to new classes of drone body, with lower requirements on manufacturing precision, such as modular or improvised drone platforms.

Safer drone operations

The flight controllers used in drone platforms today are typically based on proportional-derivative-integral (PID) technology. Their performance has been optimised in their tuning region but quickly deteriorates when the vehicle is exposed to unknown dynamics (e.g., wind, dynamic payloads, component failure). Adaptive AI has unlocked unprecedented opportunities for flight control. Adaptive neural networks have the potential to dramatically improve vehicle robustness, performance and operational safety.

Standard flight controller:
Limited flight performance

Use of simple cascaded PID systems limits the flight performance to the tuning of the vehicle. Changing payloads requires compromises in control settings.

Low robustness and fault tolerance

Not robust to disturbances failure modes.

Common failure modes can lead to a complete loss of control, even if the vehicle could theoretically recover.

Adaptive Al flight controller:
Increased robustnes

Automatic tuning to the vehicle. Adapts to variations in wind conditions, payload and centre of mass.

Improved safety and fault tolerance

Graceful degradation when propellers are damaged, or body compromised.

Power efficient

Needs very little onboard processing power (under 10% of one core of a Raspberry PI 4).

News

Elevate your drone's performance with Luffy.ai. Meet us at Drone X

Discover the future of drone performance with us. Join us at Stand G112 during Drone X London, taking place on September 26-27, 2023.

- Unlock drone potential. Explore cutting-edge software solutions engineered to enhance your drone's capabilities.

- Meet the experts. Our team of experienced engineers and drone specialists will be on-site for live demonstrations and in-depth discussions.

- Network with peers. Connect with industry professionals, exchange insights, and explore potential collaborations.

Don't miss out on exclusive presentations and surprises designed to provide valuable insights into our software innovations.

Elevate your drone's performance with us at Drone X London!

For inquiries or to schedule a personalized demonstration, please contact us.

Let's take your drones to new heights!

Ensure operational safety with the power of Luffy's Adaptive Intelligence

Resources

Adaptative Control for Drones and Robotics

To download the ebook, please submit form below

Don't miss out

Would you like to hear from us? Sign up for news from Luffy Al:

You can unsubscribe at any time by clicking the link in the footer of any email. Read our Privacy Policy here.